Новости науки

Физики МФТИ объяснили причину жёсткости поликристаллических алмазов

13 марта 2016

Физики из МФТИ разгадали тайну феноменально высокой упругости поликристаллических алмазов с размером зерна порядка 10 нанометров, которые, вопреки логике, оказались жёстче алмазных монокристаллов — оказалось, что «зерна» в поликристалле способны «активно» противодействовать внешнему давлению, говорится в статье ученых, опубликованной в журнале Applied Physics Letters.

Авторы исследования, сотрудники факультета молекулярной и химической физики МФТИ и Технологического института сверхтвердых и новых углеродных материалов в Троицке (ТИСНУМ) Павел Сорокин и Сергей Ерохин занимаются компьютерным моделированием поведения кристаллических наноструктур, чтобы определить, чем обусловлены их физические свойства, и создать основу для целенаправленного синтеза материалов с заданными свойствами.

IMG_4251.JPG

Ранее эксперименты с поликристаллическими алмазными ­структурами, состоящими из множества мелких алмазных нанокристаллов ­показали, что они в некоторых случаях могут быть более жёсткими, чем монокристаллический алмаз.

«Вопреки ожиданиям поликристаллический алмаз с кристаллитами нанометрового размера может демонстрировать большую упругость, чем чистый алмаз, монокристаллический, который считается самым жёстким кристаллом из существующих», -­ говорит Сорокин.

Чтобы объяснить этот эффект, ученые с помощью суперкомпьютеров провели компьютерное моделирование поведения нанополикристаллов под давлением. Расчеты, проведенные Сорокиным и Ерохиным, показывают, что характер реакции поликристаллических алмазов на механическое напряжение зависит от того, какой формой обладают его зерна. При этом ученым удалось найти объяснение аномальной жёсткости этих структур.

Оказалось, что отдельные кристаллиты реагируют на равномерную нагрузку со всех сторон анизотропно, они неравномерно деформируются в разных направлениях. «Поликристаллические алмазы могут превосходить монокристалл в жёсткости, и связано это исключительно с наноразмерным эффектом: кристаллиты в этом поликристалле могут иметь такую форму, что при механической деформации этого поликристалла его механический отклик будет иметь большую величину», - говорит Сорокин.

Часть из изученных моделей нанополикристаллов, как показали расчеты, обладают более высоким объемным модулем упругости, чем алмаз. Причиной этого является то, что зерна обладают специфической формой и они по­-разному контактируют друг с другом.Результаты этих расчетов и физическое объяснение рекордной упругоси нанополикристаллических алмазов, как надеются авторы статьи, помогут создать еще более прочные материалы, подбирая «правильный» размер и форму зерен. К примеру, ученые выяснили, что самые удачные поликристаллы должны получаться в тех случаях, когда они состоят из нанокристаллов размеров в 10 нанометров, что полностью соответствует литературным экспериментальным данным.

Результаты этого исследования исключительно важны для создания новых сверхтвёрдых материалов. «Подобные материалы имеют большое значение в различных областях промышленности, поскольку могут использоваться в качестве износостойких покрытий, абразивных материалов, в качестве инструментов для огранки и полировки и др. Таким образом, поиск и синтез новых сверх-­ и ультратвёрдых материалов с твёрдостью, сравнимой или даже твёрже, чем уалмаза, представляет особую важность с точки зрения как фундаментальной науки, так и прикладных применений», - заключил Сорокин.

Новости науки

Другие новости

14 января 2011 УЧЕНЫЕ ДОБАВИЛИ В РАКЕТНОЕ ТОПЛИВО НАНОПОРОШКИ

Специалисты ИПХЭТ СО РАН провели ряд экспериментов с ракетным топливом, включающим нанопорошки алюминия. Как выяснилось, именно они позволяют сделать топливо более экологичным. Микропорошки алюминия...


5 марта 2017 Получение композитных нанокабелей SiC/SiO2

Китайские исследователи получили композитный материал в виде нанокабелей, имеющих сердцевину из SiC и оболочку из аморфного SiO2.


14 февраля 2016 Встреча представителей Исследовательского центра Nissan-Россия и МГУ

В МГУ состоялась встреча представителей Исследовательского центра Nissan-Россия и Московского университета, на которой были обсуждены новейшие разработки в области синтеза наноматериалов и производства литиевых аккумуляторов нового поколения, а также программа стажировок Nissan-МГУ.