Фундаментальные основы нанотехнологий: 2. физика наносистем и наноустройства
Страница 1

Дистанционные образовательные курсы являются современной формой эффективного дополнительного образования и повышения квалификации в области подготовки специалистов для развития перспективных технологий получения функциональных и материалов и наноматериалов. Это одна из развивающихся во всем мире перспективных форм современного образования. Особенно актуальна подобная форма получения знаний в такой междисциплинарной области, как наноматериалы и нанотехнологии. Преимуществами дистанционных курсов является их доступность, гибкость в построении образовательных маршрутов, улучшение эффективности и оперативности процесса взаимодействия со слушателями, экономическая эффективность по сравнению с очной формой, которая, тем не менее, может гармонично сочетаться с дистанционной подготовкой. В области фундаментальных основ нанохимии и наноматериалов подготовлены видеоматериалы Научно-образовательного Центра МГУ по нанотехнологиям:

  • Особенности физических взаимодействий на наноуровне (Профессор А.Н. Образцов). Особенности физических взаимодействий на наномасштабах. Роль объема и поверхности в физических свойствах наноразмерных объектов. Механика нанообъектов. Механические колебания и резонансы в наноразмерных системах. Сила трения. Кулоновское взаимодействие. Оптика нанообъектов. Соотношение длины волны света и размеров наночастиц. Различия в распространении света в однородных и наноструктурированных средах. Магнетизм нанообъектов.
  • Квантовая механика наносистем (Профессор В.Ю. Тимошенко). Квантовая механика наносистем. Квантоворазмерные эффекты в нанообъектах. Квазичастицы в твердом теле и в наноструктурированных материалах. Квантовые точки. Нитевидные кристаллы, волокна, нанотрубки, тонкие пленки и гетероструктуры. Квантовые эффекты в наноструктурах в магнитном поле. Электропроводимость нанообъектов. Понятие баллистической проводимости. Одноэлектронное туннелирование и кулоновская блокада. Оптические свойства квантовых точек. Спинтроника нанообъектов.
  • Моделирование в области нанотехнологий (Профессор П.Г. Халатур). Компьютерное моделирование наноструктур и наносистем. Микроскопические и мезоскопические методы моделирования (Монте-Карло и молекулярная динамика, диссипативная динамика частиц, теоретико-полевые методы, методы конечных элементов и перидинамика). Сопряжение различных пространственных и временных масштабов. Молекулярное конструирование. Компьютерная визуализация нанообъектов. Возможности численного эксперимента. Примеры молекулярного моделирования наноструктур, молекулярных переключателей, белков, биомембран, ионных каналов, молекулярных машин.
  • Методы исследования и диагностика наносистем (Профессор В.И. Панов). Методы исследования и диагностика нанообъектов и наносистем. Электронная растровая и просвечивающая микроскопия. Электронная томография. Электронная спектроскопия. Дифракционные методы исследования. Оптические и нелинейно-оптические методы диагностики. Особенности конфокальной микроскопии. Сканирующая зондовая микроскопия: Силовая микроскопия. Спектроскопия атомных силовых взаимодействий. Туннельная микроскопия и спектроскопия. Оптическая микроскопия и поляриметрия ближнего поля. Применение сканирующей зондовой микроскопии в нанотехнологиях.
  • Микро/нанофлюидика (Профессор О.И. Виноградова). Капиллярность и смачивание в наносистемах. Поверхностная энергия и поверхностное натяжение. Капли на твёрдой и жидкой поверхности. Полное и неполное смачивание. Поверхностные (электростатические и молекулярные) и капиллярные силы. Гистерезис угла смачивания: роль химической неоднородности и шероховатости. Супергидрофобные поверхности. Фрактальные и упорядоченные текстуры. Эластокапиллярность. Динамика смачивания и растекания. Проблемы течения, перемешивания и сепарации в малых каналах и устройствах для микро- и нанофлюидики. Цифровая микрофлюидика, электрокинетика, анизотропные и супергидрофобные текстуры, как примеры решения проблем микро- и нанофлюидики. Приложения: самоочистка и водозащита, струйная печать, «lab-on-a-chip», ДНК-чипы, биомедицина, топливные элементы.
  • Физика наноустройств (наноэлектроника, МЭМС, сенсоры) (Профессор А.Н. Образцов). Физика наноустройств. Методы создания наноустройств. Механические и электромеханические микро и наноустройства. Сенсорные элементы микро- и нано-системной техники. Сенсоры температуры на основе термопар. Сенсоры угловых скоростей. Сенсоры магнитного поля. Микро- и нано-насосы. Интегральные микрозеркала. Интегральные микромеханические ключи. Интегральные микро- и нано-двигатели. Физические принципы работы основных элементов микро- и наноэлектроники. Закон Мура. Одноэлектронные приборы. Одноэлектронный транзистор. Одноэлектронные элементы цифровых схем.
  • Физика наноустройств (устройства оптоэлектроники и наноэлектроники) (Профессор В.Ю. Тимошенко). Физика наноустройств. Устройства оптоэлектроники и наноэлектроники. Светодиоды и лазеры на двойных гетероструктурах. Фотоприемники на квантовых ямах. Лавинные фотодиоды на системе квантовых ям. Устройства и приборы нанофотоники. Фотонные кристаллы. Искусственные опалы. Волоконная оптика. Оптические переключатели и фильтры. Перспективы создания фотонных интегральных схем, устройств хранения и обработки информации. Магнитные наноустройства для записи и хранения информации. Наносенсоры: полупроводниковые, пьезоэлектрические, пироэлектрические, на поверхностных акустических волнах, фотоакустические.
  • Углеродные наноматериалы и наноструктуры в лазерных технологиях (член-корреспондент РАН, профессор В.И. Конов). На примере различных углеродных материалов (нано-, поли- и монокристаллический алмаз, алмазоподобные пленки аморфного углерода) демонстрируется возможность использования лазерных технологий как для их синтеза, так и для создания наноструктур на поверхности или в объеме облучаемых образцов. С другой стороны, показано, что углеродные наноматериалы могут найти применение в качестве оптических элементов лазерных систем. Характерным примером этого является применение одностенных углеродных нанотрубок и материалов на их основе в качестве новых и высокоэффективных нелинейных оптических элементов, которые позволяют генерировать ультракороткие лазерные импульсы, необходимые для реализации значительной части лазерных нанотехнологий и многих других задач.

Другие статьи из раздела

В ответ на спад в азиатский экономике BASF сосредотачивается на китайском рынке

Немецкая химическая компания BASF делает Китай центром инвестиций на азиатском рынке. К этому шагу химический гигант побуждают два обстоятельства: размер рынка Китая (страны с населением в 1,3 миллиарда человек) и...


Персона недели. Михаил Петрович Егоров, директор Института органической химии им. Н.Д. Зелинского РАН

Академик РАН Михаил Петрович Егоров, директор Института органической химии им. Н.Д. Зелинского Российской академии наук, накануне 75-летнего юбилея широко известного научного заведения России в интервью для rccnews.ru рассказывает о славной...


Год лошади под знаком евро

С 1 января 2002 года начали хождение наличные евро. Это беспрецедентное событие – введение новой европейской валюты – неизбежно затронет финансовую жизнь России. Последние месяцы много говорилось о появлении банкнот...