Магнитные наночастицы: проблемы и достижения химического синтеза
Страница 8

Экспериментальная техника приготовления, как оказалось впоследствии – магнитных наночастиц Fe3O4, настолько проста, что сейчас эксперимент является демонстрационным и включен в некоторые лабораторные практикумы по неорганической химии [15]. Проводя синтез по методике предложенной Массартом с разнообразными модификациями, наночастицы магнетита получают и в настоящее время. Фокусируясь на более деликатных деталях эксперимента, исследователи пытаются подбирать условия таким образом, чтобы получать наночастицы желаемого размера, формы и свойств. В [78] показано, что измененяя концентрацию хлоридов в реакционной смеси от 0.0125 М до 1 М и используя короткое время гидролиза (2-10 минут) после добавления основания, можно получать сфероидальные наночастицы магнетита со средним размером от 4-х до 43-х нм, но с большим распределением по размерам (?30%) и в случае частиц размером более 20 нм – содержащих примесь гётита (FeO(OH)) в своем составе. Несмотря на простоту метода и его широкое использование, ряд вопросов связанных с механизмом протекания реакции и факторами влияющими на размер и стабильность наночастиц магнетита остается неразрешенным до сих пор, и лишь относительно недавно начали предприниматься попытки целенаправленных исследований влияния тех или иных параметров эксперимента на образующиеся наночастицы. Например в работе [94] подробно исследуется и обсуждается зависимость размеров наночастиц магнетита и его коллоидная стабильность в водных щелочных и кислотных растворах, а также составлена диаграмма окислительно-восстановительного равновесия в системе магнетит/гематит/Fe(II). В частности установлено, что средний гидродинамический диаметр (определенный методом динамического светорассеяния) наночастиц Fe3O4 в растворе соляной кислоты (pH1.7-4.6) составляет 82 нм, а в растворе тетраметиламмония (pH 9.4-12.2) – 58 нм, а наиболее стабильные дисперсии образуются в интервалах pH2-4 и 10-12. Некоторые фундаментальные аспекты коллоидной стабильности и адсорбционных свойств наночастиц магнетита изучаются на их специфическом поведении в водных растворах анионных ПАВ [62] и в процессах адсорбции поверхностью частиц ионов металлов [139]. В работе [141] исследовалось влияние внешнего магнитного поля на форму микро- и наночастиц магнетита. В ходе соосаждения образцы были помещены в магнитные поля разной напряженности (до 405 мТ). Присутствие магнитного поля никак не отразилось на форме наночастиц диаметром 7-10 нм, в то время как микрочастицы вместо сферических образовывались в виде вытянутых «палочек» длиной до 600 нм и толщиной около 100 нм.

Другие статьи из раздела

О коллайдерах, новой физике и науке

Академик РАН, главный научный сотрудник Института ядерных исследований Валерий Рубаков рассказал о том, почему ученым нельзя обойтись одним Большим адронным коллайдером, в чем заключаются критерии перенормируемости и как выживает академическая наука в России.


Взгляд молодого учёного на перспективы развития

В связи с социально-экономическими изменениями, происходящими в настоящее время в России, нанотехнологии объявлены приоритетным направлением в развитии экономики страны. В них сегодня заинтересованы предприятия самых разных отраслей: начиная, со строительных компаний, и заканчивая космической промышленностью, и медициной. В России перспективы развития нанотехнологий осознаются пока не всеми, многие вообще не слышали о НТ-технологиях.


Будут ли дешевые лекарства доступны жителям беднейших стран?

У фармацевтической промышленности почва уходит из-под ног, она пытается удержать патентные права на лекарственные средства, а требования продавать дешевые лекарства в развивающихся странах звучат все настойчивее. После оскорбительного поражения в...