Справочная

" - 1 2 4 b N O S А Б В Г Д Е Ж З И К Л м Н О П Р С Т У Ф Х Ц Ч Ш Щ Э

ТРАНСФОРМАЦИЯ

ТРАНСФОРМАЦИЯ (от лат. transformatio — превращение), в молекулярной генетике, изменение наследственных св-в клеток в результате проникновения в них чужеродной ДНК.

В результате трансформации клетка-реципиент может приобрести и устойчиво передавать своим потомкам признак, ранее у нее отсутствующий, но имеющийся у клетки донора (напр., ген устойчивости к антибиотикам).

Трансформация у мн. бактерий (пневмококки, стрептококки, гемофиль-ные бактерии, бациллы)-естественный процесс, происходящий в прир. популяциях. При этом клетки, способные поглощать и включать в свою хромосому чужеродную ДНК, находятся в состоянии т. наз. компетентности (готовности), наступающем в определенный период жизненного цикла (конец фазы роста). Развитие компетентности может идти по "каскадному" типу: клетки, ставшие компетентными, выделяют в среду низкомол. белок (т. наз. фактор компетентности), к-рый, адсорбируясь на др. клетках, делает их также компетентными.

Механизм трансформации включает необратимую адсорбцию ДНК клетки-донора (напр., выделяемую в среду в результате лизиса клеток) на пов-сти клетки-реципиента. Хорошо адсорбируется лишь ДНК, имеющая мол. массу не менее 300 тыс. У большинства бактерий адсорбироваться может ДНК любого происхождения. У гемофильных бактерий адсорбируются лишь такие фрагменты ДНК, к-рые несут специфич. последовательности из 11 пар нуклеотидов, характерных лишь для ДНК таких бактерий. Видоспецифич. адсорбция характерна также для гонококков. Адсорбция осуществляется на спец. рецепторах, где ДНК связывается с особыми белками и "втягивается" в клетку. При этом одна из нитей ДНК разрушается благодаря нуклеазной активности связывающих ДНК белков, и в клетку поступает уже однонитевая ДНК. Она тут же обволакивается молекулами белков, к-рые защищают ДНК от клеточных экзонуклеаз и способствуют ее контакту с хромосомой, а затем рекомбинации с ней. На этом процесс трансформации завершается.

ДНК можно ввести в бактерии также искусственно. Для этого, напр., бактерии кишечной группы (для них естественная трансформация не характерна) охлаждают и обрабатывают растворами СаСl2 или RbCl либо подвергают замораживанию при низких т-рах с последующим оттаиванием. Клетки при этом становятся проницаемыми для ДНК, однако механизм трансформации в этом случае совершенно иной, чем описанный выше.

В бактерии посредством трансформации можно ввести также ДНК плазмид. Конечным результатом этого является возникновение клетки, несущей чужеродную плазмиду в автономном состоянии или включенную в состав хромосомы. Механизм проникновения в клетку плазмидной ДНК такой же, как и хромосомной. Однако возникновение однонитевой ДНК и др. процессы, сопутствующие поглощению, настолько "уродуют" плазмиды, что вероятность правильного восстановления кольцевой реплицирующейся формы низка (трансформация клетки мономерными формами плазмид не эффективна). Поэтому употребляют мультимерные (состоящие из неск. плазмид) формы или плазмиды с прямыми повторами нуклеотидов, отчего шансы на "сборку" полноценной плазмиды повышаются.

С помощью плазмид можно также осуществить трансформацию протопластов (клетки с удаленной клеточной стенкой), к-рые затем регенерируют в полноценные клетки. ДНК, проникая в них, почти не повреждается и остается двунитевой. Плазмидная трансформация во многом близка к т. наз. трансфекции, когда бактерии поглощают ДНК фага (вирус бактерий), предварительно выделенную из фаговых частиц. Эта ДНК в бактерии кодирует образование новых частиц фага, к-рые разрушают затем бактериальную клетку и выходят наружу.

Трансформация у дрожжей м. б. осуществлена только искусственным путем. Для этой цели используют протопласты или обрабатывают клетки солями щелочных металлов. ДНК проникает в дрожжевые протопласты также под действием электрич. разрядов (т. наз. электропорация).

Трансформация клеток млекопитающих осуществима только искусственно в результате микроинъекций чужеродной ДНК в ядра эмбрионов, соматич. клеток или путем поглощения ДНК клетками в культуре тканей. Чаще всего ДНК добавляют к смеси р-ра СаСl2 и фосфатного буфера; образуется мелкодисперсный осадок, к-рый адсорбируется и поглощается клетками. Возможно также введение ДНК в липосоме или путем использования в качестве переносчика ДНК-содержа-щего умеренного вируса с включением в его геном фрагментов ДНК животных.

Клетки растений не способны поглощать ДНК. При трансформации клеток двудольных растений используют регенерирующие протопласты, поглощающие свободную ДНК и ДНК, заключенную в липосомы. Регенерирующие трансформированные протопласты образуют т. наз. каллусную ткань, из к-рой затем формируется растение. Др. способом введения чужеродной ДНК в геном таких растит. клеток является естественное заражение их бактерией Agrobacterium tume-faciens, несущей Ti- или Ri-плазмиды. Эта бактерия способна проникать в интактные растит. клетки, и освобождающиеся затем плазмиды встраиваются в геном. У однодольных растений эти плазмиды не функционируют в клетке, для их трансформации прибегать к прямому переносу ДНК в протопласты, используя электропорацию. Трансформацию растений можно осуществлять также путем "выстрела" в клетку ускоренными частицами вольфрама или золота, на к-рые предварительно нанесена ДНК.

Трансформацию используют в генетической инженерии для введения в клетку генов, несущих заданную информацию.

Трансформация впервые была открыта в 1928 Ф. Гриффитом. В 1944 О. Эвери с сотрудниками показал, что превращение нек-рых непатогенных бактерий в патогенные осуществляется в результате переноса в геном первых ДНК, высвобождающейся из клеток вирулентных штаммов.

Лит.: Кожина Т. И., Захаров И. А., "Успехи современной биологии", 1987, т. 104, в. 1(4), с. 3-21; Прозоров А. А., Трансформация у бактерий, М., 1988; Sybenga J., "Theor. Appl. Genet.", 1983, v. 66, № 3-4, p. 179-201; Kucherlopati R., Skoultchi A. I., "CRC critical rev. biochem.", 1984, v. 16, № 4, p. 349-79. А. А. Прозоров.